

Background and Aims

Non-invasive glucose monitoring (NIGM) may be beneficial for people with diabetes in avoiding the need for finger pricking to obtain blood samples. The aim was to assess measurement accuracy of a prototype system for NIGM, incorporating a Raman sensor, in a mixed outpatient and in-clinic setting.

Materials and Methods

A total of 15 subjects with type 1 diabetes participated in the study which lasted for 27 days per subject. Subjects performed standard blood glucose (BG) monitoring with a Contour® next ONE meter and NIGM at the thenar with the prototype system at least 6 times per day.

Data from the first 19 to 24 days were used for calibration of the NIGM system. The data from the remaining 3 to 5 days (including 1 in-clinic day each) were used for independent validation of the calibration. In-clinic sessions, during which rapid glucose excursions with high and low glucose values were induced, took place twice (1x on a calibration day and 1x on a validation day).

For data from validation days, median absolute relative difference (MedARD) was calculated and Consensus Error Grid (CEG) analysis was performed.

Results

The median ARD was 19.2% for the out-patient days, 22.0% for the in-clinic days and 18.9% for the complete study (Table 1).

CEG analysis showed 52.9% and 40.2% of values in clinically acceptable zones A and B, respectively. The remaining values fell within zones C (6.4%) and D (0.5%). No values were found in zone E.

PLEU1951D

Measurement accuracy of a newly developed prototype system for non-invasive glucose monitoring

Stefan Pleus, Peter Wintergerst, Delia Waldenmaier, Nina Jendrike, Manuela Link, Cornelia Haug, Guido Freckmann

Institut für Diabetes-Technologie Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany

Out-patient			days		In-clinic days (with glucose excursion)			Complete study	
Subject #	Mediar (%		n	N	ledian (%)	ARD	n	Median ARD (%)	n
1	7.8		10)	26.9		14	17.5	24
2	22.5		15		15.4		14	18.9	29
3	19.2		11		22.0		19	19.8	30
4	19.5		7		32.6		22	22.1	29
5	17.4		33		12.4		16	15.7	49
6	18.3		32	2 18.9			11	18.6	43
7	24.6		11		19.6		27	21.4	38
8	19.9		24	17.8)	9	18.8	33
9	17.4		35	5 26.9		21	20.2	56	
10	11.6		16	6 26.9			15	20.5	31
11	11.4		29		26.2		14	15.3	43
12	19.7		16		18.0		25	18.0	41
13	24.4		23		27.4		28	27.3	51
14	14.1		21		12.8		30	13.5	51
15	63.1		20	20 37.0			26	46.1	46
Min	7	8			12.4			13.5	
Max	7.8 63.1				37.0		_	46.1	_
Median	19.2				22.0		_	18.9	-
Aggregated Median			303	3	21.9		291	19.7 59	
CEG zone A		В	С	D	Е		CEG zone		
Out-patient performance (%) 56.1		56.1	37.6	5.9	5.9 0.3 0			In-clinic performance (%)	

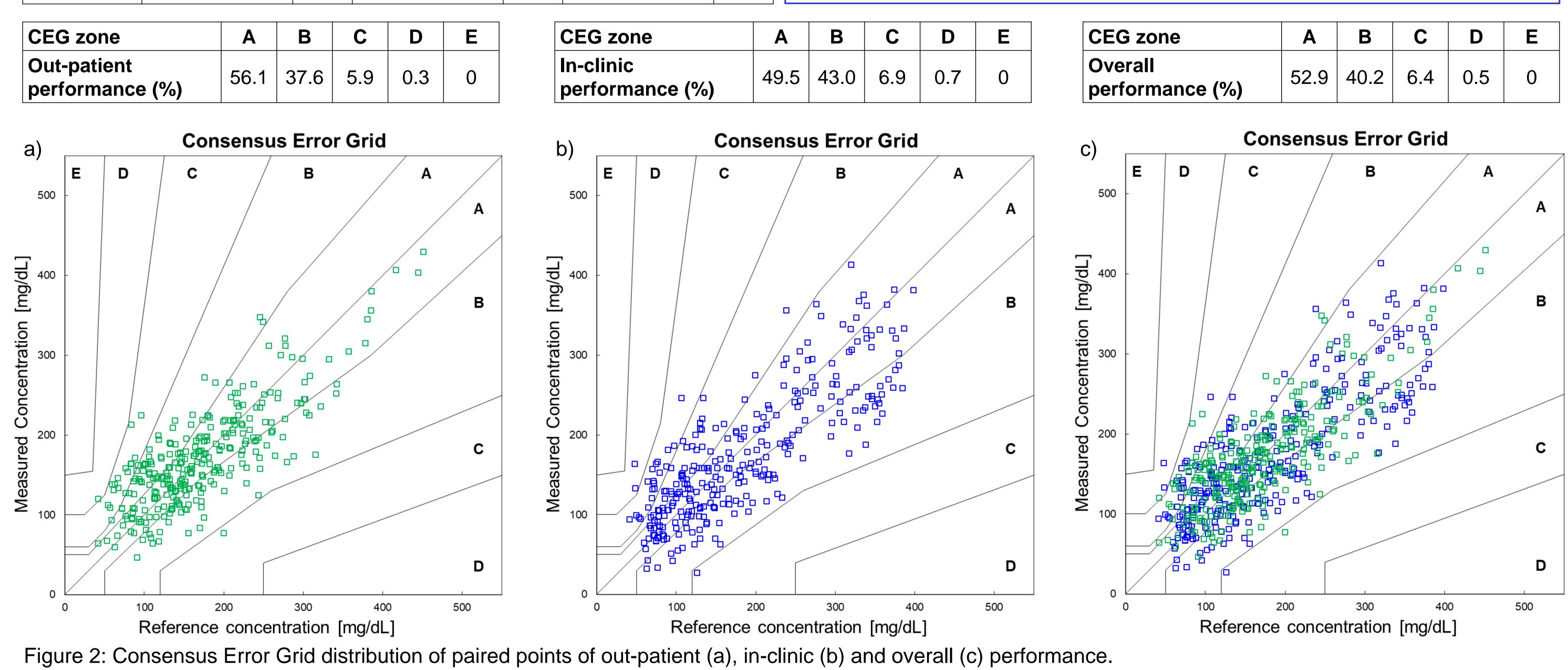


Table 1: Accuracy results for the outpatient days, the in-clinic day and the complete study (n – number of triplets of RG and prototype values). Median

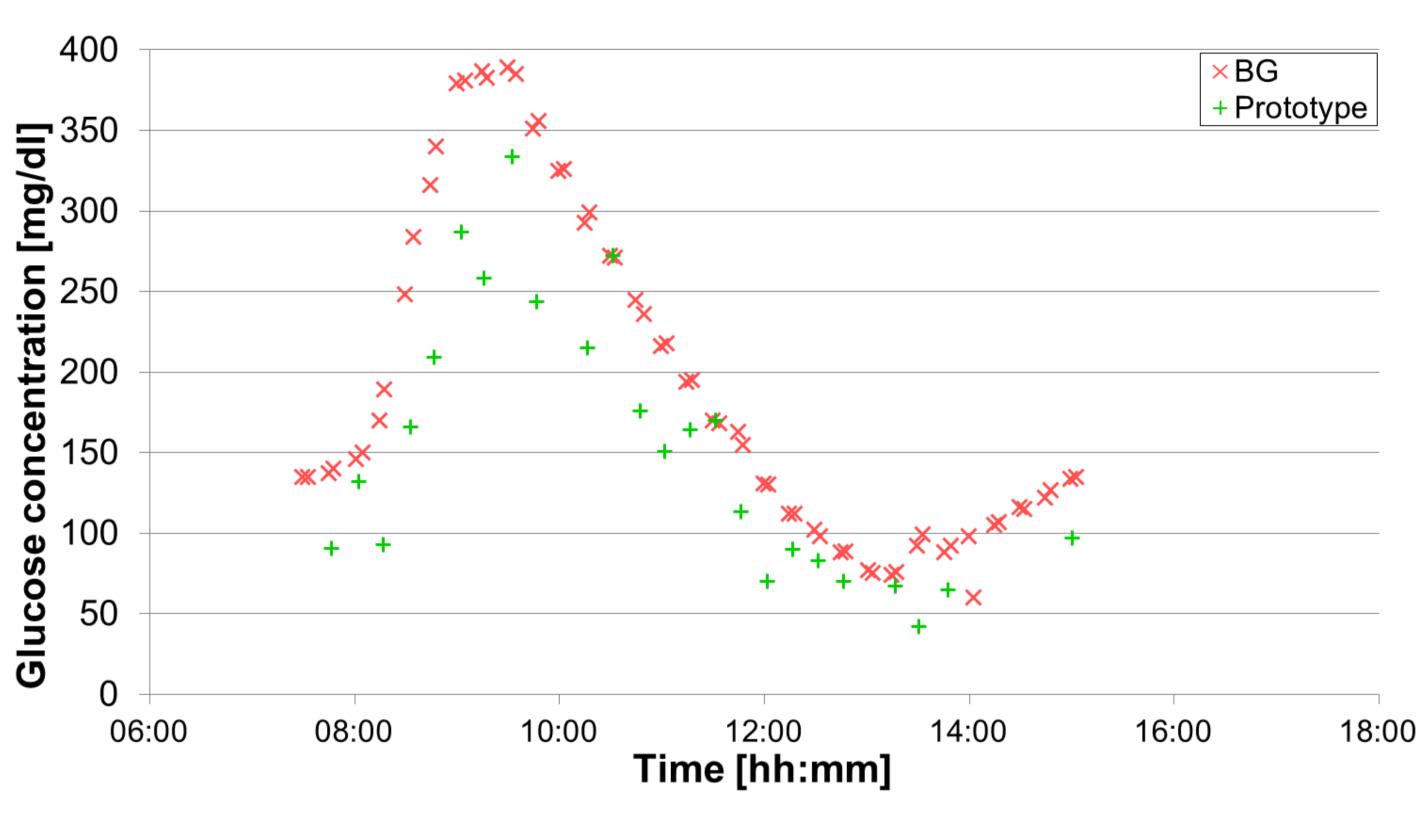


Figure 1: Example of glucose concentrations on in-clinic day (day 27). Data of subject #9.

Conclusions

Although MedARD was comparably high for the newly developed Raman-based prototype, this proof-of-concept study showed promising results. More than 93% of values were found in clinically acceptable zones of the CEG.

Stefan Pleus Institut für Diabetes-Technologie GmbH phone: +49 (0) 731 50990 0 Lise-Meitner-Str. 8/2 +49 (0) 731 50990 22 D-89081 Ulm, Germany stefan.pleus@idt-ulm.de

