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ABSTRACT: In diabetes prevention and care, invasiveness of
glucose measurement impedes efficient therapy and hampers the
identification of people at risk. Lack of calibration stability in non-
invasive technology has confined the field to short-term proof of
principle. Addressing this challenge, we demonstrate the first
practical use of a Raman-based and portable non-invasive glucose
monitoring device used for at least 15 days following calibration. In
a home-based clinical study involving 160 subjects with diabetes,
the largest of its kind to our knowledge, we find that the
measurement accuracy is insensitive to age, sex, and skin color. A
subset of subjects with type 2 diabetes highlights promising real-life
results with 99.8% of measurements within A + B zones in the
consensus error grid and a mean absolute relative difference of
14.3%. By overcoming the problem of calibration stability, we remove the lingering uncertainty about the practical use of non-
invasive glucose monitoring, boding a new, non-invasive era in diabetes monitoring.
KEYWORDS: non-invasive glucose monitoring, in vivo Raman spectroscopy, portable sensor, calibration stability,
multivariate data analysis, tissue diagnostics, diabetes

In diabetes prevention and care, invasiveness of glucose
measurement impedes efficient therapy and hampers the

identification of people at risk. Among non-invasive
technologies such as electrical, thermal, acoustical, and optical
methodologies, light offers the least intrusive probing of all
technologies investigated. Raman spectroscopy in the near
infrared has shown a consistent path of improvement, driven
by advances in lasers, optics, detectors, and algorithms.
Furthermore, direct manifestation of physiological glucose in
Raman spectra has been demonstrated, testifying that Raman
spectroscopy measures glucose in skin at physiological
concentrations.1,2 Despite these encouraging trends, a clinically
useful embodiment of this method has not yet materialized.3,4

Accuracy, calibration stability, and general robustness have
been persistent challenges for non-invasive glucose monitor-
ing.3−5 Chemometrics and machine learning algorithms are
generally used to build multivariate regression models that are
subsequently used to predict the glucose concentration. Most
attempts, irrespective of the underlying technology, involve
brief study periods, typically not more than a few hours, under
controlled conditions, and the demarcation between calibra-
tion and validation has often not been distinct.6−8 It has not
been demonstrated whether these encouraging in-clinic results,
acquired under controlled and supervised conditions, can be

generalized to real-life conditions, extended measurement
periods, and usage by lay person.
We have successfully bridged the gap from technical proof of

principle to a safe and reliable device, which can be operated
by non-specialists at home. Previously, we reported our first
successful development of a Raman spectroscopic prototype in
persons with diabetes and described a critical depth for the
confocal glucose determination in human skin9 and the
performance during glucose challenge.10 In the latter study,
the prototype demonstrated glucose kinetics akin to invasive
continuous glucose monitors,11 thus suggesting glucose
measurements in the interstitial compartment. The glucose
in the interstitial fluid arrives primary through diffusion from
the capillaries and, thus, represents a time-delayed version of
the blood counterpart.12 The use of the interstitial compart-
ment may influence the measurement accuracy, but it is
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generally not considered a significant obstacle for practical
glucose monitoring.13

The purpose of this paper is to present the key elements of
the prediction algorithm development, the clinical evidence of
the performance and calibration stability, and the utility of this
serially manufactured Raman non-invasive glucose monitoring
(NIGM) device in subjects with type 1 and type 2 diabetes on
insulin therapy.

■ RESULTS
Design of the Non-Invasive Glucose Sensor. The

sensor for non-invasive glucose determination is depicted in
Figure 1a, where the hand is positioned as intended during use.
The top cover functions both as a mechanical safety feature
(for laser light irradiation) and screening of external light
during measurements. It is worth noting that the sensor is
portable, battery-driven, and with built-in safety measures,
graphical user interface, and Wi-Fi connectivity. Moreover, the
sensor is safe in use, which is corroborated by the fact that no
serious reactions or scarring of the skin of the thenar (base of
the thumb) was observed during the extensive clinical study.
The sensor’s optical components are presented schemati-

cally in Figure 1b and described in detail in the Materials and
Methods section. Essentially, the optical hardware functions as
a confocal near-infrared Raman spectrometer that is configured
for maximum spatial sensitivity at 280 μm away from the glass
window with a sensitivity profile featuring a full-width-at-half-
maximum of 250 μm. With the thenar positioned on the
window (Figure 1a), the confocal setup ensures that the
backscattered Raman signal, arising from the interaction of the
830 nm laser illumination and the skin constituents, originates
from the upper living skin layers (i.e., living epidermis and
upper part of the dermis), while the signal from the dead outer
skin layer (stratum corneum) is suppressed.9 Additionally, the
confocality is helpful in reducing the dependency of the device-
skin interface on the collected Raman signal, which amounts in
more consistent Raman spectra.
The backscattered Raman signal is collected and dispersed

by a spectrometer in the range of 300−1615 cm−1 with a
spectral resolution of ∼10 cm−1. Figure 1c shows examples of
recorded thenar Raman spectra from subjects with different
skin colors (measured on a Fitzpatrick scale). It is comforting
to see that despite slightly less pronounced Raman peaks for
the darker skin colors (type IV and V), owing to an increased
fluorescence background, the thenar spectra do not markedly

differ, thus illustrating a relatively consistent response from all
subjects. It is important to realize that the information of the
physiological glucose concentrations resides in the thenar
spectra, which can be quantified by the use of multivariate
regression techniques. Details of the employed predictive
algorithm, including pre-processing of spectra, detection of
outliers, and training of calibration models, can be found in the
Materials and Methods section.

Maintenance of Calibration. For a sensor to be
considered applicable for practical non-invasive glucose
monitoring, it is necessary to show calibration stability. Thus,
accuracy should not depend on frequent recalibration but
remain stable over days and weeks. In the present work, we
have achieved measurement stability over a period of 15 days
after finalized calibration. Figure 2 shows the time course of

Figure 1. Non-invasive glucose sensor. (a) Novel, production-ready, portable, stand-alone, and Raman-based device configured for NIGM. (b)
Schematic optical layout. (c) Examples of recorded thenar spectra from five subjects with different skin colors, according to the Fitzpatrick scale,
where type I and type V correspond to the lightest and the darkest skin complexions, respectively. Spectra are vertically offset for clarity.

Figure 2. Calibration stability. Comparison between the daily mean of
the measured and reference glucose value and the subject-wise,
average RMSE for the 160 subjects for a validation period of 15 days.
The bars on the RMSE curve represent the standard deviation.
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the daily root-mean-squared error (RMSE), mean glucose
measurement, and reference value in the validation phase of 15
days for all subjects at home or work, without close
professional supervision. The measurement values are seen to
closely follow the reference values within 0.2 mmol/L. In the
entire 15 day validation period, the measurement accuracy
remained stable, with only a slight increase in RMSE from 1.68
to 1.84 mmol/L, thus corresponding to a reduction in
measurement accuracy of 9.5%.

Performance in Subjects with Type 1 and Type 2
Diabetes. The clinical study involved 160 subjects, 137 with
type 1 on intensive insulin therapy or insulin pumps and 23
with type 2 diabetes on insulin or antidiabetic medication. For
the first group with type 1 diabetes, the overall accuracy of
measurements is given in the consensus error plot of Figure 3a,
where 96.5% of the points fall into zones A + B, while the
typical indices of accuracy, the mean absolute relative
difference (MARD) and RMSE, over the 15 days were
19.9% and 1.9 mmol/L, respectively. For the cohort of type 2
diabetes subjects, NIGM measurements showed points within
A + B in a consensus error grid, MARD, and RMSE of 99.8%,
14.3%, and 1.6 mmol/L, respectively. As shown in Table 1,
RMSE and MARD were strongly dependent on the range of
the glucose concentration. This is particularly emphasized by
the MARD for the group of subjects with type 1 diabetes on
intensive insulin therapy with the glucose values below 3.9
mmol/L (i.e., hypoglycemia). However, this is a feature of the
MARD metric accentuating the performance in the lower
glucose ranges.14 The total collective of 160 subjects of the
study (all types of diabetes and forms of therapy) was grouped
in age ranges, gender, and skin colors according to the scale of
Fitzpatrick. As Table 2 shows, there are no major changes in
the indices of performance for these parameters. In view of the
limited numbers, these data need further confirmation.

Individual Performance. The above results describe the
performance of pooled data, acquired by uniting measurements
from enrolled subjects. To assess the homogeneity of
performance in the two subject collectives, histograms were
established for subject-wise RMSE, as shown in Figure 4.
Noticeable variation exists in RMSE, where subjects with type

1 diabetes feature an RMSE of 1.9 ± 0.5 mmol/L (mean ±
standard deviation). The subjects with type 2 diabetes show a
slightly more consistent performance, with an RMSE of 1.6 ±
0.4 mmol/L. It should be noted that with the available
metadata at hand (such as gender, age, and skin color; see
Table 2), we have only been able to establish a clear relation
between performance and the type of diabetes. The intra-group
performance variations are a result of many influential
parameters, where particularly the subject-specific glucose
dynamics and biological properties are recognized as some of
the key factors. For example, the thickness of the outer most
skin layer, the dead stratum corneum layer, is 166 ± 40 μm on
thenar,9 meaning that the Raman spectra from different
subjects feature different proportions of the signal from the
dead and living parts of the skin, which influences the raw
signal-to-noise ratio. We note that the inter-subject variation of
stratum corneum contribution to the Raman signal can, in
principle, be mitigated by adjusting the confocal collection
depth for each sensor to the specific subject. However, it was
the purpose of this study to test one nominal sensor

Figure 3. Measured glucose concentrations plotted as a function of reference values in a consensus error grid for all type 1 (a) and type 2 subjects
(b). The reference glucose value is obtained as the average of two blood glucose measurements (Contour Next One, Ascensia), whereas the
corresponding glucose measurement is the result of the PLS regression model applied to three pre-processed NIGM spectra.

Table 1. Performance of the Non-Invasive Glucose Sensor
for Three Glucose Reference Intervals, Corresponding to
Hypo-, Eu-, and Hyperglycemic Rangesa

group
interval

[mmol/L]
points

[number]
RMSE

[mmol/L]
MARD
[%]

overall all points 12,374 1.9 19.1
0−3.9 542 2.5 58.8
4.0−10.0 8141 1.6 18.9
10.1−30.0 3691 2.3 13.9

type 1 all points 10,612 1.9 19.9
0−3.9 537 2.5 58.9
4.0−10.0 6897 1.7 19.6
10.1−30.0 3178 2.4 14.1

type 2 all points 1762 1.6 14.3
0−3.9 5 2.1 51.8
4.0−10.0 1244 1.4 15.0
10.1−30.0 513 2.1 12.4

aThe results are shown for all 160 subjects and when divided into the
type 1 and 2 segments.
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configuration (collection depth of 280 μm) to be used by all.
As another example of biological variation, skin autofluor-
escence is a noticeable contributor to the in vivo Raman
spectra, and as the fluorescence level is subject-dependent (see
Figure 1c), it contributes to the shot-noise in different ways
from subject to subject. To complicate matters, the
fluorescence level is also subject to photobleaching during a
measurement, and this fluorescence decay is seen to vary both
within and between subjects (for illustrative examples, see
Figure S1).

Regression Vector of the Calibration Model. By
controlling all external factors that may influence a Raman
spectrum, such as temperature, skin inhomogeneity, and body
movement, it has previously been shown that the glucose

fingerprint though weak is directly visible in in vivo skin
spectra.2 In this study, the influence of a multitude of external
perturbations precludes the possibility to directly view the
change in the skin Raman spectrum as implied by a change in
the glucose concentration. Instead, insight into the relation
between spectral and glucose changes can be sought via
interpretable multivariate regression techniques. In our case,
we based the subject-wise calibration models on partial least
squares (PLS) regression in which the associated regression
vector represents the importance of the different regions of the
Raman spectrum when correlating with glucose reference
values. Figure 5 shows the regression vectors of the 160 PLS

Table 2. Performance of the Non-Invasive Glucose Sensor
as a Function of Age, Gender, and Skin Color for All 160
Subjectsa

group
subjects
[number]

RMSE
[mmol/L]

MARD
[%]

A + B
[%]

all 160 1.9 19.1 97.0
T1 with pump 69 2.0 19.9 96.6
T1 without
pump

68 1.9 19.9 96.4

T2 23 1.6 14.3 99.8
age: 18−31 29 2.0 19.2 96.7
age: 32−46 51 1.9 19.3 97.1
age: 47−61 51 1.9 19.4 96.8
age: 62−76 29 1.8 18.3 97.4
male 72 1.9 19.2 96.9
female 88 1.9 19.1 97.1
skin: I 3 1.6 18.8 98.0
skin: II 48 2.0 18.4 97.9
skin: III 88 1.9 19.5 96.5
skin: IV 19 1.8 19.3 96.9
skin: V 2 1.9 17.9 97.0
aT1 and T2 mark people with type 1 and type 2 diabetes, respectively.
Age groups are in years of age. Skins I through V denote the skin color
from the lightest to the darkest skin complexions, respectively,
according to the Fitzpatrick scale. The A + B column represents the
percentage of the representative number of points in the A and B
zones in a consensus error grid.

Figure 4. Histograms of subject-wise RMSE values for (a) 137 subjects with type 1 diabetes and (b) 23 subjects with type 2 diabetes.

Figure 5. Regression vectors from the individual prediction models.
The top shows the Raman spectrum for glucose and the average
regression vector obtained from the PLS prediction models. The
regression vector is seen to mimic the significant peaks in the glucose
spectrum. This is consistent for all 160 subjects as demonstrated on
the color-coded map.
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models (one for each subject), which convincingly demon-
strates that despite noticeable inter-subject spectral variation,
the PLS algorithm shows a consistent regression vector, thus
underlining that the spectrum-glucose correlation is not
spurious but a consequence of the glucose fingerprint present
in all measured skin spectra. Furthermore, by comparing the
subject-averaged regression vector with a Raman spectrum of a
glucose solution, it is evident that the most influential spectral
areas (i.e., where the regression vector has the largest absolute
values) coincide with the main Raman peaks of glucose. In this
regard, it is important to recognize that the regression vector
should not simply mirror the glucose spectrum as the complex
matrix of the skin requires the regression vector to account for
non-glucose spectral features and variations.
It is worth noting that despite the similarity between the

individual regression vectors, the underlying PLS regression
models do not necessarily feature the same number of latent
variables. For the 160 subjects, the distribution of the number
of latent variables is 20.8 ± 2.7, while subgroup analysis
regarding diabetes type shows 20.6 ± 2.8 and 21.7 ± 2.0 for
type 1 and 2, respectively. In all cases, the number of latent
variables is high, which is a signature of the complexity of the
problem with a small glucose signal residing in a largely varying
thenar Raman spectrum.

■ DISCUSSION
Discomfort and burden from multiple daily skin punctures
have for years been a strong motivation to develop
technologies for non-invasive glucose determination.15 While
the minimal-invasive enzyme electrode, after about 40 years of
research and development, found its way into practical
routine,16−19 non-invasive glucose testing, despite the many
different, technically sophisticated approaches,20 has not yet
progressed to widespread practical use.
Here, we present a portable instrument manufactured in

series that gives a satisfactory performance in the hands of
subjects with type 1 and type 2 diabetes. Its accuracy, as
demonstrated on consensus error grids and by MARD and
RMSE values, is comparable to what was found in early
continuous glucose monitoring studies with enzyme electrodes,
where MARD values between 8.8 and 19.9% have been
reported in home use.14 One must also take into account that
in continuous monitoring, glucose kinetics are subject to
mathematical correction to counteract the time lag associated
with glucose transfer from capillary to interstitial space.11

Contemporary CGMs employ trend information to correct for
the time delay.11 This type of correction is not possible with
the current intermittent measurements of NIGM. However,
when NIGM is operated in a semi-continuous mode, there is
no principal hindrance to improve accuracy by time-series
analysis and consideration of glucose dynamics.21 In fact, an
observed accuracy difference of ∼0.3 mmol/L between groups
with type 1 and type 2 diabetes (see Figure 3) is mainly
ascribed to the former group experiencing larger and steeper
glucose fluctuations, which could be alleviated by such
corrective means.
As observed in CGM, MARD as the index for accuracy is

influenced by the range as well as by rapid changes of the
glucose concentration.14 Our data suggest similar effects in
NIGM. The group of subjects with type 1 diabetes was a
considerable part of the glucose measurements in the
hypoglycemic range below 3.9 mmol/L, contributing to a
relatively high MARD value of 19.9%. In contrast, the 23

subjects with type 2 diabetes showed a smaller glucose spread
and had only 0.12% of points under 3.9 mmol/L. The
encouraging performance metrics of 99.8% of points in zones
A + B on the consensus error plot of Figure 3b, an RMSE of
1.6 mmol/L, and MARD of 14.3% suggest the qualification of
the instrument for use in type 2 diabetes.
The obtained accuracies for the subjects with type 1 and

type 2 diabetes are in the upper and the middle of the MARD
range as previously reported for CGM with enzyme electrodes
in home use.14

The presented performance metrics represent average values
over the entire glucose range of reference values (∼2 to 30
mmol/L). It is important to clarify that individual PLS models
are built on data available from the calibration days, meaning
that the subject-specific distribution of glucose reference values
dictates how the models emphasize different glucose intervals.
Thus, the best measurement accuracy is achieved for glucose
values around 8 mmol/L, which coincides with the glucose
value most frequently occurring in the calibration data (see
Table 1 and Figure S2). Though not sought in this work, we
note that the dependence of accuracy on the glucose value can
be eliminated by constructing regression models on a
controlled distribution of reference values.22

The presented NIGM sensor technology is based on a
confocal Raman setup that converts recorded thenar spectra to
quantitative glucose values through the use of chemometrics.
This approach is fundamentally different from commercial,
home-use (invasive) glucose monitors that are based on
enzymatic electrochemical technology, where a generated
electrical current is proportional to the surrounding glucose
level.23 This is also the basic working principle of novel
wearable sweat glucose sensors.24,25 The electrochemical
technology is therefore based on univariate regression,
meaning that any spurious chemical activity, adding or
subtracting from the primary process of chemical conversion
of glucose by the enzyme, biases the glucose measurement. As
such, the issue of interferences must be combated on the
hardware level, which is typically achieved by using an enzyme
that is highly sensitive to glucose and by coating the electrode
with a permselective membrane.23 The Raman + chemo-
metrics approach is altogether different as no single point in
the spectrum determines the glucose value, but a multitude of
signals contributes to the determination of a single glucose
value. The sensitivity toward glucose is not inherently present
in the thenar spectra, but the specificity is achieved through
training of the multivariate regression model. By feeding the
model with a multitude of paired spectra and reference glucose
values acquired over many days, the influences from natural
biological variation and environmental conditions are sepa-
rated from the glucose variability, hence creating robust
models that are sensitive to glucose. The robustness and
glucose sensitivity, as demonstrated by the 15 day calibration
stability and accurate glucose measurements, are thus achieved
through mathematical means.
The 15 day stability of calibration, the consistent spectrum-

glucose correlation, and the lack of major effects of age, gender,
and skin color on performance, as shown in Table 2,
unequivocally demonstrate that the combination of Raman
spectroscopy and chemometrics can be configured for practical
use. The presented results are based on PLS models that are
built on 26 days of calibration data. The extended calibration
period originates from the study setup, featuring six measure-
ments per day, and the requirement of a certain amount of data
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to ensure predictive power and calibration stability of the
subject-wise PLS models.26 That said, it is important to
emphasize that the PLS models are not crucially sensitive to
the 26 days of calibration. For example, the number of
calibration days (and the size of the calibration set
accordingly) can be reduced to 20 or 14 days with a respective
increase in the average, subject-wise RMSE over the 15 day
validation period of 2.4 and 10.7% (for further details, see
Figure S3). It is expected that the calibration requirement can
be significantly reduced by utilizing calibration transfer
techniques and/or creating robust regression models by
combining data from multiple subjects and devices.27

■ CONCLUSIONS
We have shown that Raman spectroscopy, coupled with
multivariate data analysis, is well suited for home-use non-
invasive glucose monitoring in people with diabetes. We
developed a robust Raman-based, portable sensor for
intermittent glucose determination that has proven to be
successful in the hands of lay people, irrespective of age,
gender, and skin color. Crucially, the sensor technology can be
calibrated for real-life usage, which in this work is
demonstrated by a measurement accuracy that remains stable
over a 15 day validation period. The glucose sensor is still in
development, and our focus is on further miniaturization,
further improvement of accuracy, extended calibration stability,
and a reduced calibration scheme. As a final remark in relation
to the ever-present discussion of the beginning of the non-
invasive era in diabetes management, it is interesting to note
that the presented results convincingly corroborate with a
recent review that foresees Raman spectroscopy to be the most
promising technology for non-invasive glucose monitoring.28

■ MATERIALS AND METHODS
Instrumentation. The spectral acquisition was performed using a

custom-built confocal Raman setup of external dimensions of 168 mm
(l) × 130 mm (w) × 62 mm (h). The optical module, as depicted in
Figure 1b, consists of a spectrometer and a probe assembled into one
unit (Wasatch Photonics, USA). The thenar of the hand was placed
on a 500 μm-thick magnesium fluoride window for the measurements.
The output from the continuous-wave diode laser (Beijing RealLight
Technology, China), emitting light at a wavelength of 830 nm with a
power of 300 mW, was first collimated, and unwanted spectral side
lobes and fluorescence were removed by a clean-up filter. The laser
light was then transmitted by the dichroic mirror and finally focused
(by the f/0.55 lens) just below the skin surface. Meanwhile, both the
intense reflected/scattered light, fluorescence, and generated Raman
photons were collected by the f/0.55 lens; the dichroic mirror and the
long-pass filter ensure that only the latter two contributions to the
spectrum were focused by the lens on the entrance slit of the
spectrometer that also functions as the pinhole in our confocal setup.
The spectrometer has an f-number of 1.3 with a spectral resolution
better than 1 nm in the measurement range of ∼850 to 960 nm.
Finally, the dispersed light was recorded by a CCD image sensor
(Hamamatsu, Japan) that was temperature-stabilized at 20 °C.

Participants. The clinical study was performed at Institute for
Diabetes Technology at University of Ulm, Germany, Steno Diabetes
Center Copenhagen and Steno Diabetes Center Odense, Denmark
according to the Declaration of Helsinki and the Guidelines for Good
Clinical Practice. One hundred sixty consecutive persons with
manifested type 1 and type 2 were recruited and asked for written
consent. Exclusion criteria were severe hypoglycemia in the past 3
months; hypoglycemia unawareness; severe diabetes-related compli-
cations (e.g., advanced autonomic neuropathy, kidney disease, foot
ulcers, legal blindness, or symptomatic cardiovascular disease as
evidenced by a history of cardiovascular episode(s)); systemic or

topical administration of glucocorticoids for the past 7 days;
pregnancy or lactation period; known severe allergy to medical-
grade adhesive or isopropyl alcohol (used to clean the skin); inability
to comply with the study procedures (due to, e.g., psychiatric
diagnoses, lack of cognitive ability, alcohol dependency, drug use, or
psychosocial overload); inability to hold the arm or hand still
(including tremors and Parkinson’s disease); and extensive skin
changes, tattoos, or diseases on the right thenar. All subjects were
screened with a skin tone sensor (DEESS Demi II GP531, Shenzen
GSD Tech Co., Ltd., China) for skin color I to V according to the
Fitzpatrick scale.29 One hundred thirty-seven persons with type 1
diabetes, used to intensive treatment with blood glucose self-
monitoring 4−6 times per day, rapid mealtime insulin, and long-
acting insulin at bedtime or pump use, were instructed in the use of
the device. The cohort of 23 subjects with type 2 diabetes on oral
antidiabetic drugs and/or insulin was under a similar test regimen as
the group with type 1 diabetes.

Ethical Standards. The study was approved by the local ethical
committees, the German Federal Institute for Drugs and Medical
Devices, and the Danish Medicines Agency. It was registered as no.
2020040420 (DK) and with EUDAMED no. CIV-20-04-032405.

Study Design. The study period was 41 days, where the first 26
days of the study were used for calibration, while the remaining 15
days were used for validation. On each day, subjects performed six
measurement units, each comprising two reference capillary tests and
three NIGM scans in the sequence BGM reference, NIGM, NIGM,
BGM reference, and last, NIGM. The NIGM scans lasted for 75 s
each, but the measurement time can easily be reduced without
noticeably affecting measurement performance (see Figure S4). All
subjects remained unaware of the NIGM readings. After instruction
on the use of the NIGM device, there was no further professional
supervision during the sessions for the days at home or work.
Capillary glucose, as standard for calibration and parallel measure-
ment with NIGM, was measured with the Contour Next One system
(Ascensia, Switzerland). Accuracy in the hands of subjects was found
to correspond to a MARD of 5.6%.30 Control solution measurements
were performed on the test strips for every new strip vial opened
before handing test strips to subjects. The raw data were transmitted
to RSP Systems, Odense, Denmark for further evaluation.

Data Analysis. The relationship between recorded Raman spectra
and associated BGM references was established through PLS
regression.31 The data analysis was centralized in Python using the
scikit-learn package. A single NIGM scan involved a series of recorded
Raman spectra, while a single measurement unit comprised three
NIGM scans. The study comprised 41 measurement days, where each
day encompassed six measurement units. Thus, the starting point of
the data analysis was a large database of thenar Raman spectra that
initially underwent cleaning/filtering. The cleaning step involved
removal of saturated spectra, spike removal, and deletion of NIGM
units in which the difference in the two BGM reference values was
above 1.5 mmol/L. The latter represented an unusual high variation
in consecutive BGM references and, for this reason, was treated as
error-prone reference values. After the initial cleaning, the spectra of
each scan were averaged to a single spectrum, normalized to unit
Euclidean norm, and aligned to a Raman axis of 300−1615 cm−1 in
700 equidistant points (i.e., spectral features). The spectra were
further processed by Savitzky−Golay smoothing (five-point window,
first-order polynomial) and corrected for varying fluorescence
backgrounds by second-order extended multiplicative scatter
correction (EMSC).32 The BGM reference of a measurement unit
was found by simple averaging of the two reference values.

To improve model construction and prediction, the dataset was
analyzed for the presence of outliers. Spectral outliers were identified
by calculation of the Q-residuals and Hotelling’s T2s and
subsequently compared to the 99% confidence intervals.33 If more
than one scan of a measurement unit was identified as an outlier, then
the whole unit was removed. As the final preprocessing step, the
spectra and reference values were mean-centered. The PLS regression
model was trained on the preprocessed scan spectra, where the three
spectra of a measurement unit refer to the same reference value. The
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number of PLS components was determined from minimization of
the root-mean-squared error (RMSE) of 20-fold, contiguous cross-
validation. During validation of the calibration model, the prediction
of a measurement unit was obtained by averaging the underlying scan
predictions, as obtained by entering the scan spectra into the PLS
model. It is important to recognize that the dataset consists of 26 and
15 days of calibration and validation data, respectively, that were kept
separate during the data analysis. For example, the extended
multiplicative scatter correction reference, outlier model, mean-center
reference, and PLS regression model were all based on calibration
data, while the validation data was solely used for independent
validation of the predictive performance.
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